Our Technology

Our patented technology, JAA-F11 specifically targets the alpha-linked form of a well-known disaccharide tumor marker, the Thomsen-Friedenreich glycoantigen (TF-Ag), found on the surface of 80% of all carcinomas.

Thus, over half of all cancers are expected to be TF-Ag positive, creating a potentially huge market.

TF-Ag is involved in spread of cancer cells. The mechanism of the involvement of TF-Ag in cancer metastasis is shown below right. We believe that our highly specific JAA-F11 antibody which reacts with TF-Ag will create a survival advantage for patients with TF-Ag expressing tumors through direct killing of cancer cells and by blocking tumor cell spread. It also will be useful in many cancers to detect metastases. Studies of 39 human breast cancer cell lines shows reactivity of JAA-F11 with ~80%, including the difficult to treat triple negative breast cancers. Immunohistochemical analysis shows specific binding to ~80% of the patients' tumors from patients with several types of carcinomas including breast, prostate, bladder, lung, and ovarian.

Clinical translational research of humanized JAA-F11 for antibody-drug conjugate therapy and diagnosis is currently underway. We used the crystal structure of JAA-F11 and carbohydrate threading to create humanized antibody constructs with the same or improved specificity.

The humanized construct selectively kills cancer cells by Antibody Directed Cellular Cytotoxicity, and can internalize rapidly to be used in antibody-drug conjugates.

Competitive Advantage

Our technology, the JAA-F11 antibody is targeted immunotherapy addressing the critical need for safe and effective treatment for primary and metastatic BrCa, including the unmet need for treatment of triple negative BrCa.

Plan and Strategy

Our strategic plan is to bring humanized JAA-F11 to first-in human BrCa trials and seek strategic pharmaceutical partnerships with the intent to license our technology.

Product Pipeline

Pipeline One: Humanized JAA-F11 for direct antibody therapy of Breast Cancer
Pipeline Two: Humanized JAA-F11 construct for antibody-drug conjugate delivery for Breast Cancer Therapy
Pipeline Three: Theranostic for IHC confirmation of TF-Ag expression prior to patient treatment with JAA-F11 therapy.
Pipeline Four: Humanized JAA-F11 for direct antibody therapy of Lung Cancer
Pipeline Five: Humanized JAA-F11 construct for antibody-drug conjugate delivery for Lung Cancer Therapy

Anti-metastatic or imaging properties of JAA-F11
  • Humanization of JAA-F11, a Highly Specific Anti-Thomsen-Friedenreich Pancarcinoma Antibody and In vitro Efficacy Analysis

  • Kimiko FergusonArti YadavSusan MoreyJulia AbdullahGabriel HrysenkoJing Ying EnMunawwar SajjadStephen Koury & Kate Rittenhouse-Olson (2014) Preclinical studies with JAA-F11 anti-Thomsen-Friedenreich monoclonal antibody for human breast cancer (Future Oncology February 2014 ,Vol. 10, No. 3, Pages 385-399 , DOI 10.2217/fon.13.209 (doi:10.2217/fon.13.209)                               http://www.futuremedicine.com/doi/abs/10.2217/fon.13.209

  • Glinskii, O., Li, F., Wilson, L., Barnes, S., Rittenhouse-Olson, K., Barchi Jr, J., Pienta, K., & Glinsky, V. (2014). 

  • Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane.Oncotarget, 5(5), 1382-1389.
  • Matthew B. Tessier, Oliver C. Grant, Jamie Heimburg-Molinaro,Snehal Jadey, Andrew Gulick, Kate Rittenhouse-Olson, and Robert J. Woods. Computational Screening of the Human TF-Glycome Provides a Structural Definition for the Specificity of Anti-Tumor Antibody JAA-F11
    PLoS ONE 8(1): e54874. doi:10.1371/journal.pone.0054874
  • Adel Almogren, Julia Abdullah, Kshipra Ghapure, Kimiko Ferguson, Vladislav Glinskii, KateRittenhouse-Olson (2012). Anti-Thomsen-Friedenreich-Ag (anti-TF-Ag) potential for cancer therapy. Frontiers in Bioscience.S4, 840-863. 
  • Jamie Heimburg-Molinaro, Michelle Lum, Geraldine Vijay, Adel Almogren and Kate Rittenhouse-Olson Cancer Vaccines and Carbohydrate Epitopes Vaccines(2011) doi:10.1016/j.vaccine.2011.09.009.
  • Peter Gassmann, Mi-Li Kang, Soeren T. Mees, and Joerg Haier: In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell--endothelial cell interaction. BMC Cancer 10, 177 (2010). 
  • Jamie Heimburg-Molinaro, Adel Almogren, Susan Morey, Olga V Glinskii, Rene Roy, Gregory E. Wilding, Richard P. Cheng, Vladislav V. Glinsky, and Kate Rittenhouse-Olson: Development, Characterization, and Immunotherapeutic Use of Peptide Mimics of the Thomsen-Friedenreich Carbohydrate Antigen.Neoplasia 11, 780–792 (2009) PMid:19649208 PMCid:2713588
  • Richa Chaturvedi, Jamie Heimburg., Jun Yan, Stephen Koury, Munwwar Sujjad, hani H. Abdel Nabi, Kate Rittenhouse-Olson: Tumor immunolocalization using 124-Iodine labeled JAA-F11antibody to Thomsen Friedenreich alpha-linked antigen. Applied Radiations and isotopes 66, 278-287 (2008)
  • Rittenhouse-Olson, K. Future Perspective article. JAA-F11: Extending the life of mice with breast cancer. In p.923-927. Expert Opinions in Biological Therapy 7 (7) 2007.
  • Jamie Heimburg, Jun Yan, Susan Morey, Olga V. Glinskii, Virginia H. Huxley, Linda Wild, Robert Klick, Rene Roy, Vladislav V. Glinsky, and Kate Rittenhouse-Olson: Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-Friedenreich antigen monoclonal antibody JAA-F11 Neoplasia 8, 939-948 (2006). 
  • Olga V. Glinskii, Virginia H. Huxley, Gennadi V. Glinsky, Kenneth J. Pienta, Avraham Raz, and Vladislav V. Glinsky: Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7, 522-527 (2005). 
  • Olga V. Glinskii, James R. Turk, Kenneth J. Pienta, Virginia H. Huxley, and Vladislav V. Glinsky: Evidence of porcine and human endothelium activation by cancer-associated carbohydrates expressed on glycoproteins and tumour cells. J Physiol554, 89-99 (2004) 
  • V. V. Glinsky, G. V. Glinsky, K. Rittenhouse-Olson, M. E. Huflejt, O. V. Glinskii, S. L. Deutscher, and T. P. Quinn: The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61, 4851-4857 (2001).PMid:11406562
  • K. Rittenhouse-Diakun, Z. Xia, D. Pickhardt, S. Morey, M. G. Baek, and R. Roy: Development and characterization of monoclonal antibody to T-antigen: (Gal beta1-3GalNAc-alpha-O). Hybridoma 17, 165-173 (1998). 

The Protective Effect of Naturally Occurring Antibodies to TF-Ag

  • Kodar, K., O. Kurtenkov, and K. Klaamas: The Thomsen-Friedenreich antigen and alpha gal-specific human IgG glycoforms: concanavalin a reactivity and relation to survival of cancer patients. Immunol Invest 38, 704-17 (2009). 
    doi:10.3109/08820130903147193 PMid:19860583
  • O. Kurtenkov, K. Klaamas, S. Mensdorff-Pouilly, L. Miljukhina, L. Shljapnikova, and V. Chuzmarov: Humoral immune response to MUC1 and to the Thomsen-Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival. Acta Oncol 46, 316-323 (2007).
  • E. P. Smorodin, O. A. Kurtenkov, B. L. Sergeyev, V. I. Chuzmarov, and V. P. Afanasyev: The relation of serum anti-(GalNAc beta) and -para-Forssman disaccharide IgG levels to the progression and histological grading of gastrointestinal cancer. Exp Oncol 29, 61-66 (2007).
  • Klaamas, K., Kurtenkov, O., Rittenhouse-Olson, K., Brjalin, V., Miljukhina, L., Shljapnikova, L., Engstrand, L: Expression of tumor-associated Thomsen-Friedenreich Antigen (T Ag) in Helicobacter pylori and modulation of T Ag specific immune response in infected individuals.Immunol Invest 31, 191-204 (2002). 
    doi:10.1081/IMM-120016240 PMid:12472179
  • P. R. Desai Immunoreactive T and Tn antigens in malignancy: role in carcinoma diagnosis, prognosis, and immunotherapy. Transfus Med Rev. (4):312-25 (2000). 
    doi:10.1053/tmrv.2000.16229 PMid:11055076
  • G. F. Springer, S. M. Murthy, P. R. Desai, W. A. Fry, H. Tegtmeyer, and E. F. Scanlon: Patients' immune response to breast and lung carcinoma-associated Thomsen-Friedenreich (T) specificity. Klin Wochenschr 60, 121-131 (1982).
  • G. F. Springer, M. S. Murthy, P. R. Desai, and E. F. Scanlon: Breast cancer patient's cell-mediated immune response to Thomsen-Friedenreich (T) antigen.Cancer 45, 2949-2954 (1980) 
  • Kurtenkov, L. Miljukhina, J. Smorodin, K. Klaamas, N. Bovin, M. Ellamaa, and V. Chuzmarov: Natural IgM and IgG antibodies to Thomsen-Friedenreich (T) antigen in serum of patients with gastric cancer and blood donors--relation to Lewis (a,b) histo-blood group phenotype. Acta Oncol38, 939-943 (1999).
  • G. F. Springer: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med75, 594-602 (1997).
    doi:10.1007/s001090050144 PMid:9297627
  • Georg F. Springer, Parimal R. Desai, Herta Tegtmeyer, Bruce D. Spencer, and Edward F. Scanlon: Pancarcinoma T/Tn antigen detects human carcinoma long before biopsy does and its vaccine prevents breast carcinoma recurrence. Ann NY Acad Sci 690, 355-357 (1993)doi:10.1111/j.1749-6632.1993.tb44029.x PMid:8368754
  • G. F. Springer, P. R. Desai, and E. F. Scanlon: Blood group MN precursors as human breast carcinoma-associated antigens and "naturally" occurring human cytotoxins against them. Cancer37, 169-176 (1976). 

Lungs upper right from a control animal with metastatic breast cancer, lungs lower left from an animal with the same breast cancer that had been blocked from metastasizing by JAA-F11.

Right TF-Ag and metastasis a schematic Left : JAA-F11 staining (indicated by brown color) of 2 human Breast tumors.
Website Builder